Spectro-Temporal Interactions in Auditory and Auditory-Visual Speech Processing

Ken W. Grant

Walter Reed Army Medical Center, Washington, D.C.

Steven Greenberg

The Speech Institute, Oakland, CA

http://www.wramc.amedd.army.mil/departments/aasc/avlab grant@tidalwave.net

Acknowledgments

Collaborations:

David Poeppel and Virginie van Wassenhove

Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD

Funding:

NIH Grant: DC 00792-01AI

NSF Grant (subcontract): SBR 9720398 - Learning and Intelligent Systems Initiative of the National Science

Speech Recognition in Noise and Reverberation

- Primary complaint expressed by hearing-impaired and elderly patients
- Important for machine recognition (ASR)

Noisy, Reverberant Speech: Demo

Goal: Improve Speech-to-Noise Ratio

- Signal Processing (e.g., noise reduction algorithms)
- New Technologies (e.g., directional microphones)
- Speechreading and Auditory-Visual Integration

Auditory-Visual vs. Audio Speech Recognition

Roughly 6 dB improvement in S/N; roughly 30% improvement in intelligibility for NH subjects

Auditory-Visual vs. Audio Speech Recognition

Auditory-Visual vs. Audio Speech Recognition

Roughly 6 dB improvement in S/N; roughly 30% improvement in intelligibility for NH subjects.

Spectral Interactions

Audio-visual benefit depends on the spectral locus of the acoustic signal

- AV Benefit is determined primarily by redundancy between acoustic and visual information
- Redundancy can be estimated by information transmission

Auditory-Visual Spectral Interactions: Consonants

Speechreading + Speech Envelope Bands

Redundancy Hypothesis – Modeling Results

Predicted AV consonant recognition based on PRE model of integration (Braida, 1991).

PRE

 Speechreading provides information mostly about place-ofarticulation

- Speechreading provides information mostly about placeof-articulation
- Auditory-visual speech recognition is determined primarily by complementary cues between visual and auditory modalities

- Speechreading provides information mostly about placeof-articulation
- Auditory-visual speech recognition is determined primarily by complementary cues between visual and auditory modalities
- The most intelligible auditory speech signals do not necessarily result in the most intelligible auditory-visual speech signal

- Speechreading provides information mostly about placeof-articulation
- Auditory-visual speech recognition is determined primarily by complementary cues between visual and auditory modalities
- The most intelligible auditory speech signals do not necessarily result in the most intelligible auditory-visual speech signal
- Acoustic cues for voicing and manner-or articulation are the best supplements to speechreading

- Speechreading provides information mostly about placeof-articulation
- Auditory-visual speech recognition is determined primarily by complementary cues between visual and auditory modalities
- The most intelligible auditory speech signals do not necessarily result in the most intelligible auditory-visual speech signal
- Acoustic cues for voicing and manner-or articulation are the best supplements to speechreading
- These cues tend to be low frequency

Temporal Window for A and AV Integration

AUDIO-ALONE EXPERIMENTS

Word Intelligibility - Single and Multiple Slits

From Greenberg, Arai, and Silipo (1998). Proc. ICSLP, Sydney, Dec. 1-4.

Slit Asynchrony Affects Intelligibility

Desynchronizing the slits by more than 25 ms results in a significant decline in intelligibility

The effect of asynchrony on intelligibility is relatively symmetrical

From Greenberg, Arai, and Silipo (1998). Proc. ICSLP, Sydney, Dec. 1-4.

Cross-Spectral Temporal Asynchrony Effects

From Greenberg, Arai, and Silipo (1998). Proc. ICSLP, Sydney, Dec. 1-4.

AUDITORY-VISUAL EXPERIMENTS

Auditory-Visual Tasks

IEEE Sentences

- Recognition of key words
 - Audio slits 1 + 4
 - Video presented at various temporal asynchronies

CV Syllables

- Recognition of McGurk pairs
 - Audio /pa/, /ba/, /ta/, /da/
 - Video /ka/, /ga/, /ta/, /da/
- Synchrony identification and discrimination
 - Yes/No single interval simultaneity judgments
 - congruent versus incongruent tokens

Auditory-Visual Asynchrony - Paradigm

Cross-Modality Temporal Asynchrony Effects: Sentences

McGurk Synchrony Paradigm

Temporal Integration in the McGurk Effect

Synchrony Identification - Natural vs. McGurk AV Tokens

Temporal Window of Integration

Spectro-Temporal Integration: Summary

Within Modality (Cross-Spectral Auditory Integration)

- TWI is symmetrical
- TWI roughly 20-40 ms (phoneme?)

Across Modality (Cross-Modal AV Integration)

- TWI is highly asymmetrical favoring visual leads
- TWI is roughly 160-250 ms (syllable?)
- TWI for Incongruent CV's (McGurk Stimuli) is not as wide as TWI for natural congruent CV's

Auditory-Visual Speech Perception Laboratory

http://www.wramc.amedd.army.mil/departments/aasc/avlab grant@tidalwave.net